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Abstract

We have developed a fundamental understanding of nanoscale fluid dynamics for fluid-
based technologies with unprecedented capabilities. Using analytics and numerics we
have investigated the Brownian driven, and externally driven, dynamics of micro and
nanoscale elastic objects (such as cantilevers and beams) in a viscous fluid over a wide
range of system parameters and for a number of experimentally important configurations.
We developed an approach to compute the Brownian or externally driven dynamics using
a single deterministic computation that can be performed on a personal workstation. Ther-
mal motion is computed using the fluctuation-dissipation theorem and externally driven
dynamics using transfer function theory. We quantify the effects of the cantilever and
beam geometry upon their dynamics, the role of nearby bounding surfaces, the increased
frequency and quality factors when using the higher flexural modes, and build a physical
understanding of the fluid correlated motion of an array of elastic objects.

1 Computing the Stochastic and Driven Dynamics of Elas-

tic Objects in Fluid
The stochastic dynamics of micron and nanoscale cantilevers driven by thermal or Brown-
ian motion can be quantified using strictly deterministic calculations. This is accomplished
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using the fluctuation-dissipation theorem since the camtileemains near thermodynamic
equilibrium [1, 2]. As part of this research project we have extended this approach to the
experimentally important case of determining the stochastic dynamics of the angle of the
cantilever tip. The following discussion has been reported in Refs. [3, 4].

The autocorrelation of equilibrium fluctuations in cantilever displacement can be deter-
mined from the deterministic response of the cantilever to the removal of a step force
from the tip of the cantilever (i.e. a transverse point force removed from the distal end of
the cantilever). If this forcg (¢) is given by

{FO fort <0

ft) = (1)

0 fort>0,

wheret is time andFj is the magnitude of the force, then the autocorrelation of the equi-
librium fluctuations in the displacement of the cantilever tip is given directly by

(u1(0)uq(t)) = kT 2)

wherefkp is Boltzmann'’s constant, is the temperature, andlis an equilibrium ensemble
average. In our notation lower case letters represent stochastic variaplesig the
stochastic displacement of the cantilever tip) and upper case letters represent deterministic
variables U, () represents the deterministic ring down of the cantilever tip due to the step
force removal). The spectral properties of the stochastic dynamics are given by the Fourier
transform of the autocorrelation.

The thermodynamic approach is valid for any conjugate pair of variables [5]. For example,
itis common in experiment to use optical techniques to measure the angle of the cantilever
tip as a function of time [6]. It has also been proposed to use piezoresistive techniques to
measure voltage as a function of time [7]. The thermodynamic approach remains valid for
these situations by choosing the correct conjugate pair of variables.

We have also explored the stochastic dynamics of the angle of the cantilever tip. In this
case, the angle of the cantilever tip is conjugate to a step point-torque applied to the can-
tilever tip. If this torque is given by

7(t) = 3)

70 fort <0
0 fort>0,

wherer, is the magnitude of the step torque, then the autocorrelation of equilibrium fluc-
tuations in cantilever tip-angl) is given by

©1(1)

To

(01(0)0,(t)) = kT (4)



L(pm) w(pum) h(pm) & (N/m) k; (N-m/rad) f, (kHZz)

(1)197 29 2 1.3 16x10% 71
(2)140 156 06 0.1 89x1071 38

Table 1: Summary of the cantilever geometries and material properties. (1) The rect-
angular cantilever. (2) The V-shaped cantilever used is the commercially available Veeco
MLCT Type E microlever that is used in AFM [8]. The geometry is given by the cantilever
length L, width w, and height.. For the V-shaped cantilever the total length between the
two arms at the base Is= 161.64um. The cantilever spring constafttorsional spring
constant;, and resonant frequency in vacuypare determined using finite element nu-
merical simulations. The cantilevers are immersed in water with depsity997 kg/nt

and dynamic viscosity = 8.59x 10~* kg/m-s.

Here©,(t) represents the deterministic ring down, as measured by the tip-angle, resulting
from the removal of a step point-torque. Again, the Fourier transform of the autocorrela-
tion yields the noise spectrum.

A powerful aspect of this approach is that it is possible to use deterministic numerical sim-
ulations to determin€, (t) and©,(t) for the precise cantilever geometries and conditions

of experiment. This includes the full three-dimensionality of the dynamics which are not
accounted for in available theoretical descriptions. The numerical results can be used to
guide the development of more accurate theoretical models.

1.1 The stochastic dynamics of cantilever tip-deflection and tip-angle

The stochastic dynamics of the cantilever tip-displacemeft) and that of the tip-angle

01(t) yield interesting differences. Using the thermodynamic approach, insight into these
differences can be gained by performing a mode expansion of the cantilever using the
initial deflection required by the deterministic calculation. The two cases of a tip-force
and a tip-torque result in a significant difference in the mode expansion coefficients which
can be directly related to the resulting stochastic dynamics.

For small deflections the dynamics of a cantilever with a non-varying cross section are



given by the Euler-Bernoulli beam equation,

U U
pg + BT =0, (5)

wherelU (z, t) is the transverse beam deflectigris the mass per unit length; is Young's
modulus, and is the moment of inertia [9]. For the case of a cantilever where a step force
has been applied to the tip at some time in the distant past the steady deflection of the
cantilever at = 0 is given by

FQ 1'3 2

whereL is the length of the cantilever and the appropriate boundary conditiohg &je=
U'(0) = U"(L) = 0andU"(L) = —Fy/EI. The prime denotes differentiation with
respect tor.

Similarly, the deflection of the same cantilever beam due to the application of a point-
torque at the cantilever-tip is quadratic in axial distance and is given by

U(z) = %xQ, (7)

where the appropriate boundary conditionsi@(é) = U'(0) = U (L) = 0 andU" (L) =
170/EI. The angle of the cantilever measured relative to the horizontal or undisplaced
cantilever is then given byan © = U’ ().

The mode shapes for a cantilevered beam are given by

®,(xr) = —(coskL + coshkz) (cos KL — cosh k)

+ (sinkL — sinh kz) (sin kL 4 sinh kx) , (8)

wheren is the mode number, and the characteristic frequencies are givenbyw?u/E1.
The mode numbers are solutions td + cos kL cosh kL. = 0 [9]. The initial cantilever
displacement given by Eqs. (6) and (7) can be expanded into the beam modes

Ulx) =) an®u(z), 9)
n=1
with mode coefficients,,. The total energy, of the deflected beam is given by
L
By, = %I U (x)%dz, (10)
0



which is entirely composed of bending energy. The fractiotheftotal bending energy
contained in an individual mode is given by

_EI ("
"2E, Jo

The coefficient®,, for the rectangular cantilever of Table 7 are shown in Table 2. For the

(a,®" (2)) dz. (11)

case of a force applied to the cantilever tip, 97% of the total bending energy is contained

in the fundamental mode and the energy contained in the higher modes decays rapidly
with less than 1% of the energy contained in mode three. When a point-torque is applied

to the same beam it is clear that a significant portion of the bending energy is spread over
the higher modes. Only 61% of the energy is contained in the fundamental mode and the
decay in energy with mode number is more gradual. The fifth mode for the tip-torque case

contains more energy than the second mode for the tip-force case. Although we have only
discussed a mode expansion for the rectangular cantilever, the V-shaped cantilever will

exhibit similar trends since the transverse mode shapes are similar to that of a rectangular
beam [10].

The variation in the energy distribution among the modes required to describe the initial
deflection of the cantilever can be immediately connected to the resulting stochastic dy-
namics. For the deterministic calculations the initial displacement can be arbitrarily set to
a small value. In this limit the modes of the cantilever beam are not coupled through the
fluid dynamics. As a result, the stochastic dynamics of each mode can be treated as the
ring down of that mode from the initial deflection. This indicates that the more energy that
is distributed amongst the higher modes initially the more significant the ring down and,
using the fluctuation-dissipation theorem, the more significant the stochastic dynamics.

The mode expansion clearly shows that the tip-torque case has more energy in the higher
modes. This suggests that stochastic measurements of the cantilever tip-angle will have a
stronger signature from the higher modes than measurements of cantilever tip-displacements.
Using finite element simulations for the precise geometries of interest we quantitatively
explore these predictions.

1.2 Computing the Driven Dynamics

In order to calculate the cantilever dynamics due to an external driving force we com-
pute the cantilever’'s response to an appropriately chosen impulse in force. This has been
done using an impulse in velocity to explore the driven dynamics of cantilevers beams of
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n b, (tip-force) b, (tip-torque)

1 0.97068 0.61308
2 0.02472 0.18830
3 0.00315 0.06473
4 0.00082 0.03309
5 0.00030 0.02669

Table 2: The fraction of the total enerd@y, contained in the first five beam modes given by

the coefficient$,. The tip-force results are for a rectangular beam that has been deflected
by the application of a point force to the cantilever tip. The tip-torque results are for
a rectangular beam that has been deflected by the application of a point torque to the
cantilever tip. The coefficients clearly show that the tip-torque case has significantly more
energy contained in the higher modes.

(w3)'"*(nm) (62)"*(rad)

(1) 5.6 5.0 x 1077
(2) 20 7.0 x 107°

Table 3: The magnitude of stochastic fluctuations in tip-deflection and in tip-angle for the
rectangular (1) and V-shaped (2) cantilevers. These values were obtained from numerical
simulations simulations of the beams in vacuum.

varying geometry, near a solid wall, and including the effects of higher modes of oscilla-
tion [11]. In what follows we focus upon the dynamics of the fundamental flexural mode
and allow the driving force to vary spatially given by,

Fpd(1) r<¢§

0 x> (12)

Fd(X*,t) = {
wherex* = (L, b/2, h/2) indicates the tip coordinates where the force is applied where
F, is a constant force. The time dependent displacement of the canfiléert) due to
the application of the drive force is computed numerically. The power spectrum in terms
of cantilever displacement is then given by

(13)




The power spectrum in terms of cantilever angle is found by pamg the slope of
W (z,t) at the region of interest to yielé(z, t) and

Py(z,w) = é)(:c, w)

2
| (14)

An advantage of this approach is that the complete spectral response over all frequency,
and for all modes, is determined from a single numerical simulation. The alternative of
performing many simulations at different frequencies is computationally prohibitive for
these systems.

2 The role of cantilever geometry

In this section we report on our progress in quantifying the stochastic dynamics of a can-
tilever in fluid as a function of the cantilever geometry. The resulting fluid-solid interaction
problem is quite complex and geometric effects can have a significant impact upon device
performance. We have explored two important geometries that are commonly used: a can-
tilever with a rectangular cross-sectional area, and a cantilever with a V-shaped planform
as shown in Fig. 1. The results of our study have been reported in detail in Refs. [3, 4].

2.1 Rectangular Cantilever

We have performed deterministic numerical simulations of the three-dimensional, time
dependent, fluid-solid interaction problem to quantify the stochastic dynamics of a rect-
angular cantilever immersed in water using the thermodynamic approach previously dis-
cussed. The deterministic numerical simulations are done using a finite element approach
that is described elsewhere [12,13].

The stochastic fluctuations in cantilever tip-displacement for a rectangular cantilever in

water have been described elsewhere [2, 5, 14, 15]. In the following we compare these
results with the stochastic dynamics as determined by the fluctuations of the cantilever
tip-angle. The geometry of the the specific micron scale cantilever we explore is given in

Table 7.

The autocorrelations in equilibrium fluctuations follow immediately from the ring down
of the cantilever due to the removal of a step force (to yield0)u(¢))) or step point-
torque (to yield(¢,(0)6,(t))). The autocorrelations of the rectangular cantilever are shown
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Figure 1: Schematics of the two micron scale cantilever géaeseconsidered (not drawn

to scale). Panel (a), A rectangular cantilever with aspect ratiags= 98.5, w/h = 14.5,
andL/w = 6.8. The cantilever is composed of silicon with density= 2329 kg/ni

and Youngs ModulugZ = 174 GPa. Panel (b), A V-shaped cantilever with aspect ratios
L/h =233, w/h = 30,andL/w = 7.8. The total width between the two arms normalized
by the width of a single arm is/w = 10.36. The cantilever planform is an equilateral
triangle withd = /3. The cantilever is composed of silicon nitride wjth= 3100kg/m?

and £ = 172GPa. The specific dimensions for the rectangular and V-shaped cantilever
are given in Table 7.

in Fig. 2. The magnitude of the noise is quantified by the root mean squared tip-angle and
deflection which is listed in Table 3.

A comparison of the autocorrelations yields some interesting features. At short times
(01(0)0,(t)) shows the presence of higher harmonic contributions. This is shown more
clearly in the inset of Fig. 2. This further suggests that the angle autocorrelations are more
sensitive to higher mode dynamics.

The Fourier transform of the autocorrelations yield the noise spectra shown in Fig. 3. In
our notation the subscript @ indicates the variable over which the noise spectrum is
measured:Gy is the noise spectrum for tip-angle any is the noise spectrum for tip-
displacement. The equipartition theorem of energy yields,

1 [ kgT
1 [ kgT
g /0 Go(w)dw = 5 (16)

wherek andk; are the transverse and torsional spring constants, respectively. The curves
in Fig. 3 are normalized using the equipartition result to have a total area of unity. Using
this normalization the area under a peak is an indication of the amount of energy contained
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Figure 2: The normalized autocorrelation of the rectangcdentilever for tip-deflection
(solid) and tip-angle (dashed). (Inset) A detailed view of the autocorrelation at short time
differences to illustrate the influence of higher modes in the tip-angle measurements.

in a particular mode. Figure 3 shows only the first two modes, although the numerical
simulations include all of the modes (within the numerical resolution of the finite element

simulation). The energy distribution across the first two modes shows the significance of
the second mode for the tip-angle dynamics.

Using a simple harmonic oscillator approximation it is straight forward to compute the
peak frequency; and qualityQ for the cantilever in fluid. Using a single mode approxi-
mation yields the values shown in Table 4. As expected there is a significant reduction in
the cantilever frequency when compared with the resonant frequency in vaguand

the quality factor is quite low because of the strong fluid dissipation. The valugsanfd

Q for tip-angle and tip-dispacement are nearly equal. This is expected since the displace-
ments and angles are very small, resulting in negligible coupling between the modes. Any
differences inv; and@ can be attributed to using a single mode approximation.

It is useful to compare these results with the commonly used approximation of an oscil-
lating, infinitely long cylinder with radius)/2 [2,16, 17]. The cantilever used here has an
aspect ratio of./w ~ 7 and the infinite cylinder theory is quite good at predictinguef
and@.
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Figure 3: The noise spectra of stochastic fluctuations inleast tip-angle (dashed) and
tip-deflection (solid) for the rectangular cantilever. The curves are normalized to have the
same area, however only the first two modes are shown.

2.2 The stochastic dynamics of a V-shaped cantilever

We have also explored the stochastic dynamics of a V-shaped cantilever in fluid. An inte-
gral component of any theoretical model is an analytical description of the resulting fluid
flow field caused by the oscillating cantilever. The deterministic finite element simulations
that we performed yield a quantitative picture of the resulting fluid dynamics. Exploring
the flow fields further yields insight into the dominant features that contribute to the can-
tilever dynamics.

As discussed earlier, for long and slender rectangular cantilevers the flow field is often
approximated by that of a cylinder of diameteundergoing transverse oscillations. This
approach assumes that the fluid flow is essentially two-dimensional in the plane

and neglects any flow over the tip of the cantilever. Figure 4 (top) illustrates this tip
flow for the rectangular cantilever using vectors of the fluid velocity inithe y plane

atz = 0. The figure is a close-up view near the tip of the cantilever. It is evident that
the flow over the rectangular cantilever is nearly uniform in the axial direction leading
up to the tip. However, near the tip there is a significant tip flow that decays rapidly in
the axial direction away from the tip. The increasing significance of the tip flow as the
cantilever geometry becomes shorter (for example, by simply decreBsiagnot certain

and remains an interesting open question. However, for the geometry used here it is clear

10



wy/wo Q@

(1)  0.35 3.34
(2)  0.36 3.26

Table 4: The peak frequency and quality factor of the fundamental mode of the rectangular
cantilever determined by finite element simulations using the thermodynamic approach.
(1) is computed using the cantilever tip-displacement due to the removal of a step force.
(2) is computed using the cantilever tip-angle due to the removal of a point-torque. The
frequency result is normalized by the resonant frequency in vacyutdsing the infinite
cylinder approximation with a radius af/2 the analytical predictions a@ = 3.24 and

wy/woy = 0.34.

that this tip-flow is negligible based upon the accuracy of the analytical predictions using
the two-dimensional model.

Figure 4 (bottom) illustrates the tip flow for the V-shaped cantilever, again by showing
velocity vectors in ther — y plane atz = 0. The shaded region indicates the part of
the cantilever where the two arms have merged. To the right of the shaded region illus-
trates flow off the tip and to the left indicates flow that circulates back in between the two
individual arms.

In order to illustrate the three-dimensional nature of this flow, the flow field in/the:

plane is shown at two axial locations in Fig. 5. Figure 5(top) is at axial locatierv7um.

The two shaded regions indicate the two arms of the cantilever. Each arm is generating
a flow with a viscous boundary layer (Stokes layer) as expected from previous work on
rectangular cantilevers. However, the Stokes layers interact in a complicated manner near
the center. It is expected that as one goes from the base of the cantilever to the tip that
these fluid structures would transition from non-interacting to strongly-interacting.

Figure 5(bottom) illustrates the flow field at axial locatior- 108.8um, the axial location

at which the two arms of the cantilever merge to form the tip region. The length of the
shaded region is therefoB,m or twice that of a single arm shown in Fig. 5(top). For
this tip region the flow field is similar to what would be expected of a single rectangular
cantilever of this width.

Overall, it is clear that the fluid flow field is more complex for the V-shaped cantilever

11



Figure 4: The fluid flow near the tip of the cantilever as illagtd by the velocity vector

field calculated from finite element numerical simulations. A cross section aof the

plane at: = 0 is shown (see Fig. 1) that is a close-up view of the tip-region. The shaded
region indicates the cantilever (because of the small deflections used in the simulations
that cantilever does not appear to be deflected). (left) The flow field near the tip of the
rectangular cantilever. This flow field is at ts6and the magnitude of the largest velocity
vector shown is -0.3 nm/s. (right) The flow field near the tip of the V-shaped cantilever.
This flow field is at t=7.2s and the magnitude of the largest velocity vector shown is -26
nm/s. The shaded region indicates the tip region where the two single arms have merged.
The open region to the left is where the two single arms have separated revealing the open
region in the interior of the V-shaped cantilever.

than for the long and slender rectangular beam. For the V-shaped cantilever the flow is
three-dimensional near the tip region where the two arms join together.

Central to the flow field dynamics are the interactions of the two Stokes layers caused
by the oscillating cantilever arms. The thickness of these Stokes layers are expected to
scale with the frequency of oscillation 4g'a ~ R,,~'/? wherea is the half-width of the
cantilever andr,, = wa?/v is a frequency based Reynolds number (often called the fre-
quency parameter). For the relevant case of a cylinder of radagsillating at frequency

w the solution to the unsteady Stokes equations yields a distance of approxifdately
capture 99% of the fluid velocity in the viscous boundary layer [18]. For a single arm of
the V-shaped cantilever this distance is nedflym. In comparison, the total distance
between the two arms at the base 25,m. This separation is large enough such that

the two Stokes layers have negligible interactions near the base. However, as the arms
approach one another with axial distance the Stokes layers overlap and eventually merge

12



Figure 5: The fluid velocity vector field at two axial positioa®ng the V-shaped can-
tilever calculated from deterministic finite element numerical simulations. Cross sections
of they — =z plane are shown (see Fig. 1), the entire simulation domain is not shown and the
shaded region indicates the cantilever. Both images are taken gt$=ah#d the maximum
velocity vector shown is -26 nm/s. (left) The- 2 plane atr = 77um. The skewed width

of a single arm of the cantilever in this cross-sectioisigm. The distance separating the
two cantilever arms i86um. (right) They — z plane atr = 108.8um. This is the point at
which the two single arms join to make a continuous cross-section of @icth

at the tip.

Despite the complicated interactions of the three-dimensional flow caused by the can-
tilever tip and the axial merging of the two Stokes layers, the V-shaped cantilever be-
haves as a damped simple harmonic oscillator. The autocorrelations in tip-angle and tip-
displacement that are found using full finite element numerical simulations are shown in
Fig. 6. It is again clear that the tip-angle dynamics have significant contributions from
the higher modes, see the inset of Fig. 6. The area normalized noise spectra are shown in
Fig. 7.

Using a simple harmonic oscillator analogy a peak frequency and a quality factor can be
determined from the first mode in the noise spectra of Fig. 7. These values are given in the
first two rows of Table 6. The quality of the cantileveljs~ 2 and the peak frequency is
reduced significantlyy ;/w, ~ 0.2. compared to the resonant frequency in the absence of

a surrounding viscous fluid.

It is insightful and of practical use to determine the geometry of the equivalent rectangular
beam that would yield the precise valueskgfw,, and() calculated for the V-shaped

13
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Figure 6: The normalized autocorrelation of equilibrium fuations in the tip-deflection
(u1(0)uy(t)) (solid lined) and in tip-angléd; (0)6, (¢)) (dashed-line) for the V-shaped can-

tilever. The inset shows a close-up of the dynamics for short time differences to illustrate

the influence of the higher modes in the tip-angle measurements.

cantilever from full finite-element numerical simulations. For the rectangular beam the

equations are well known (c.f. Ref. [2]) and yield a unique value of ledgthvidth «’,
and height:’ as shown below,

3EI  Ew'h?
ko= I3 - 4L (17)
Q0 = ™Y _ o + 1w ) (18)
oy Dwhwy)

where the peak frequency is determined from the maximum of the noise spectrum,

G, = Pl 1l (19)

k wWo
ToaoT" (Ro)
(1 = @2(1 + ToI"(Ro)))? + (@*Tol™ (Row))?)

X

In the above equations = w/wy is the normalized frequency, = 0.234 is a constant fac-
tor to determine an equivalent lumped mass for a rectangular beans, the equivalent
mass of the cantilever plus the added fluid magss the fluid damping[ is the hydro-
dynamic function for an infinite cylindel;’ is the real part of’, andI'” is the imaginary

part of . Equations (28)-(18) can be solved to yield values for the unknown geometry of

the equivalent rectangular beath w’, andh’ which are given in Table 5. The equivalent

14
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Figure 7: The noise spectra for the V-shaped cantilever asrrdated from the tip-
displacementz, (solid line) and from tip-angl€s, (dashed line). The curves are nor-
malized to have an area of unity, with only the first two modes shown.

beam is shorter, thinner, and wider than the V-shaped cantilever. Importantly, the width of
the equivalent beam is nearly twice that of a single arm of the V-shaped cantilever.

/L w/jw RN

0.8 1.9 0.8

Table 5: The geometry of the equivalent rectangular beam that yields the exact vatues of
wy, and@ for the V-shaped cantilever that have been determined from full finite-element
numerical simulations. The length, width, and height of the equivalent éam’, 1)

are calculated using Egs. (28)-(18) and are normalized by the valuésof §) for the
V-shaped cantilever given in Table 7.

These results suggest that the parallel beam approximation (PBA) [19—-22] commonly used
to determine the spring constant for a V-shaped cantilever may also provide a useful geom-
etry for determining the dynamics of V-shaped cantilevers in fluid. In this approximation
the V-shaped cantilever is replaced by an equivalent rectangular beam of Iengittith

2w, and height to yield a simple analytical expression for the spring constant. This has
been shown to be quite successful for V-shaped cantilevers that have arms that are not sig-
nificantly skewed. The results of using the geometry of this approximation to determine

15



wy and @) from the two-dimensional cylinder approximation are shown on the third row of
Table 6. It is clear that this is quite accurate. It is expected that these results will remain
useful for cantilever geometries that do not deviate significantly from that of an equilat-
eral triangle as studied here. An exploration of the breakdown of this approximation is
possible using the methods described but is beyond the scope of the current efforts.

wy/wo Q
(1) 0.21 1.98
) 0.22 2.04
(L.2w,h)  0.19 1.98

Table 6: The peak frequency and quality factor of the fundamental mode of the V-shaped
cantilever determined by finite element simulations using the thermodynamic approach.
(1) is computed using the cantilever tip-displacement due to the removal of a step force. (2)
is computed using the cantilever tip-angle due to the removal of a point-torque. The third
line represents theoretical predictions using the geometry of an equivalent rectangular
beam given by(L, 2w, h). The frequency result is normalized by the resonant frequency
In vacuumwy.

3 The importance of nearby bounding surfaces

In practice, the cantilever is never placed in an unbounded fluid and the influence of nearby
boundaries must be accounted for to provide a complete description of the dynamics.
In many cases the cantilever is purposefully brought near a surface out of experimental
interest in order to probe some interaction with the cantilever or to probe the surface itself.
This can have a significant impact upon the performance of a device. Overall, the presence
of a boundary tends to increase the viscous dissipation acting upon a cantilever causing
the quality factor of the oscillations to decrease. In our research we have quantified this
precisely over a wide range of experimentally relevant conditions. This work has been
published in Refs. [3,4].

To specify our discussion we will consider the situation depicted in Fig. 8 showing a
cantilever a distance from a planar boundary. In the following we study the case where

16



the cantilever exhibits flexural oscillations in the direatperpendicular to the boundary.
However, we would like to emphasize that our approach is general and can be used to
explore arbitrary cantilever orientations and oscillation directions if desired. The fluid is
assumed to be unbounded in all other directions. It is well known that the presence of the
boundary will influence the dynamics of the cantilever [23—-25]. The result is a reduction
in the resonant frequency and quality factor. This has been described theoretically for the
case of a long and thin cantilever of simple geometry where the fluid dynamics have been
assumed two-dimensional [26—29].

Figure 8: A schematic of a cantilever a distancavay from a solid planar surface (not
drawn to scale). The cantilever undergoes flexural oscillations perpendicular to the sur-
face.

In the following we use the thermodynamic approach with finite element numerical simu-
lations to quantify the dynamics of the V-shaped cantilever as a function of its separation
from a boundary. We have performed 8 simulations over a range of separations from 10 to
60um using both the tip-deflection and tip-angle formulations. The noise spectra for these
simulations are shown in Fig. 9. Using the insights from our simulations of the V-shaped
cantilever in an unbounded fluid we expect the relevant length scale for the fluid dynamics
to be twice the width of a single arw. Using the peak frequency of the V-shaped can-
tilever in unbounded fluid yields a Stokes length= 4.14;m. Scaling the separation by

the Stokes length yield2.5 < s/0, < 15 which covers the range from what is expected

to be a strong influence of the wall to a negligible influence. Figure 9 clearly shows a
reduction in the peak frequency and a broadening of the peak as the cantilever is brought
closer to the boundary. In fact, for the smaller separations the peak is quite broad and the
trend suggests that eventually the peak will become annihilated as the cantilever is brought
closer to the boundary.

Using the noise spectra we compute a peak frequency and a quality factor for the funda-
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Figure 9: Panel (a) The noise spectrg of stochastic fluctuations in cantilever tip-
deflection for separations = 10,12, 15,20,40um. Panel (b) the noise spectty of
stochastic fluctuations in cantilever tip-angle for separatioasl 5, 25, 60m. The spec-
tra have been normalized by the maximum valué&-gfor Go. The smallest and largest
values of separation are labeled with all other values appearing sequentially.

mental mode as a function of separation from the boundary, which are plotted in Fig. 10.
The horizontal dashed line represents the value of the peak frequency and quality factor in
the absence of bounding surfaces using the two-dimensional infinite cylinder approxima-
tion [2] where the cylinder width has been chosen t@belt is clear from the results that

for separations greater thapo, = 7 the V-shaped cantilever is not significantly affected

by the presence of the boundary. However, as the separation decreases below this value
the peak frequency and quality factor decrease rapidly.

The triangles in Fig. 10 represent the theoretical predictions of Green and Sader [28, 29]
using a two-dimensional approximation for a beam of uniform cross-section that accounts
for the presence of the boundary. We have used a widthvolh computing these the-
oretical predictions for comparison with our numerical results. Despite the complex and
three-dimensional nature of the flow field the theory is able to accurately predict the quality
factor over the range of separations explored. The frequency of the peak for the V-shaped
cantilever shows some deviation from these predictions.

In general, an increase in the period of oscillation for a submerged object can be attributed
to the mass of fluid entrained by the object [30]. The lower peak frequency calculated for
the V-shaped cantilever using a two-dimensional solution indicates an over-prediction of
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the mass loading. This can be attributed to the three-diraeakilow around the tip being
neglected for this approach. It is reasonable to expect the cantilever tip to carry a smaller
amount of fluid than a section of the beam body moving with the same velocity, see Fig. 4.
The quality factor relates to the ratio of the mass loading and the viscous dissipation and
is less sensitive to deviations incurred from the two-dimensional approximation. Despite
neglecting three-dimensional flow around the cantilever tip, the two-dimensional model
for the fluid flow around the V-shaped cantilever gives an accurate prediction of the peak
frequency and quality factor.
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Figure 10: The variation of the peak frequency (panel (a)) qulity (panel (b)) of the
fundamental mode of the V-shaped cantilever in fluid as a function of separation from
a nearby wall. Results calculated using tip-deflection are circles, results using tip-angle
are squares, and theoretical predictions using the results of Ref. [29] are triangles. The
peak frequency and quality factor of the fundamental mode in an unbounded fluid are
w/wr ~ 0.19 and@ ~ 2 and are represented by the horizontal dashed line. The distance
s is normalized by the Stokes lengihwherea = w to yield o, = 4.14um.

4 The dynamics of doubly-clamped beams in viscous fluid:
tailoring the geometry to improve quality factors
There are numerous experimental advantages to using a doubly-clamped beam as opposed

to a cantilever in fluid. Important advantages include technologies for on-chip sensing and
actuation that do not require bulky or complex optics. It is also anticipated that the higher
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frequency of oscillation of a doubly-clamped beam, when cameg to a cantilever of the
same length and geometry, will lead to improved quality factors of the oscillations. In this
research we have quantified this in detail for a large range of experimentally accessible
parameters. Our results have been discussed in detail in Refs. [31, 32].

4.1 Motivation for doubly-clamped beams

There is a growing need for fast and sensitive micron and nanoscale sensors and actua-
tors that operate in viscous fluid environments. Many important technologies are based
upon the dynamics of small elastic beams in fluid [6, 33—-35]. If an elastic beam is uni-
formly reduced in size it will become both softer (the equivalent spring constant is re-
duced) and faster (the fundamental frequency of oscillation increases). This advantageous
trend is often exploited [35]. However, in a fluid environment the relative magnitude of
viscous forces to inertial forces becomes large resulting in a dramatic reduction in the
quality factor and resonant frequency of the fundamental mode of oscillation. For ex-
ample, the dynamics of a nanoscale cantilever in water can be overdamped [1]. Several
approaches have been proposed to overcome this difficulty including the use of the higher
order beam modes [10, 11, 33, 36—38], nonlinear feedback control strategies for the ex-
ternal drive [39, 40], by varying the cross-sectional geometry of long-thin cantilevers that
are driven externally [11], and by embedding the fluid inside the cantilever while it oscil-
lates in vacuum [41]. However, these approaches can be difficult to implement in practice
and often require sophisticated measurements and control electronics. In addition, for the
strongly damped dynamics under consideration here the mode of actuation directly af-
fects the resulting quality factor and resonant frequency (c.f. [2]). In many applications
a simpler tactic is desirable to overcome the strong viscous damping. In this paper we
explore the variation in beam dynamics as a function of its geometry. In particular, we
guantify the stochastic dynamics of doubly-clamped beams with rectangular cross-section
for a wide range of sizes and geometries including short and wide beams that are not well
described by available analytical theory. Using numerical simulations for the precise con-
ditions of experiment we quantify the Brownian driven dynamics of micron scale beams
in fluid and explore the physical origins of the fluid dissipation. These results determine
the effectiveness of tailoring the beam geometry to overcome the strong viscous damping.

We calculate the stochastic dynamics of the doubly-clamped beams, see Fig. 11, using
the thermodynamic approach discussed in detail in Refs. [1,2]. The approach requires
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only a single deterministic calculation of the fluid dissipatthat is used to compute

the stochastic beam displacement via the fluctuation-dissipation theorem. For a doubly-
clamped beam the deterministic calculation is the ring-down of the beam due to the re-
moval of a step point-force applied to the center of the beam. We emphasize that the
only assumptions in this result are that of classical dynamics and small deflections. Us-
ing three-dimensional, time dependent, finite element simulations for the precise geome-
tries of interest the stochastic dynamics are computed. In particular, we calculate the
autocorrelations and noise spectra of equilibrium fluctuations in the beam displacement.
The basic approach has been validated both against analytics and experimental measure-
ment [1, 2, 26,27,42] and also used to study the fluid-coupled motion of two atomic force
microscope cantilevers [43] and two nanoscale cantilevers [1,2]. In many situations of

z €))
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Figure 11: A schematic of a doubly-clamped beam used in theerigal simulations

with length L, width w, and heighth with uniform rectangular cross-section. (a) The

x — z plane of the beam in fluid. The beam is supported by a rigid support of width

w on each side for the short-wide geometries to minimize the effects of the bounding
side walls. The beam is light grey and the two rigid supports are darker grey. (b) The
y — z plane of the beam illustrating the rectangular cross-section. In our simulations the
beam is immersed in room temperature water and we compute the stochastic dynamics of
the fundamental flexural mode driven by Brownian motion. In the following figures the
vertical displacement of the beamaat= L /2 is referred to as, (¢) for thermally induced
fluctuations and/; (¢) for the deterministic ring down simulations.

technological and scientific interest, such as atomic force microscopy, the elastic beams
are long and thin. > w > h wherelL is the lengthuw is the width, and: is height of

the beam. The fluid-solid interaction problem describing the motion of a waving beam in
fluid is very difficult with analytical solutions available only under idealized conditions
such as simple beam geometries and for small deflections [16, 17, 44, 45]. In the limit
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Figure 12: (a) The predicted variation of the quality fagfbfor the stochastic displace-
ment of a beam immersed in a viscous fluid with respect to the nondimensional frequency
parameterk, and mass loading parameft&y. (b) The predicted variation of the resonant
frequency in fluidw; with respect toR, and7,. In both panels five curves are shown

for T, = 0.5,1,2,4,8. The bounding two curves are labeled with the remaining curves
in sequential order.R, is evaluated at the resonant frequency of the beam in vacuum.
The quality() is determined by evaluating Eq. (26)wat wherew; is the frequency that
maximizes Eq. (20).

of small beam displacements, a two-dimensional approximation for the fluid flow over
the beam is often used to determine the force interactions with an Euler-Bernoulli beam.
This approach has been very successful in predicting the resulting beam dynamics in a
viscous fluid [16]. Furthermore, it has been shown that replacing the rectangular beam
cross-section with that of a cylinder of diameter equal to the widthields small errors

on the order of several percent [17]. The flow field generated by an oscillating cylinder
is well known as well as the forces acting on the surface of the cylinder [30, 46]. These
approximations have led to insightful analytical expressions describing the stochastic dy-
namics of beams in fluid [1, 16]. However, the validity and accuracy of these expressions
remain unclear for the finite beam geometries often used in experiment.

In the limit of a long and thin beam, small displacements, and using the two-dimensional
approximation of an oscillating cylinder for the fluid flow, the noise spectrum of equilib-
rium fluctuations in displacement of the beam measured-atL/2 for the fundamental
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mode is given by [1],

) = 4kpT 1 Towli(Ro@)
kowo [(1— @2 (1+ Tyl (Ro@))? + (@*Tolu(Ro))?]

: (20)

wherew is the frequency of oscillationy = w/wy is the reduced frequency is the
resonant frequency of the fundamental mode in vaculiymis the frequency parameter
evaluated atv, I'(w) is the hydrodynamic functiori], is the mass loading parameter,
kg is Boltzmann’s constanf] is the temperature, ankl is the spring constant for the
fundamental mode. The frequency parameter is,

(,UQU)Q

RO - Ay ) (2 1)

and is a frequency based Reynolds number representing the ratio of local inertia to viscous
forces wherev is the kinematic viscosity of the fluid. In our notation, the frequency
parameterR is evaluated at arbitrary frequeney and Rz is evaluated ab;. The mass

loading parameter is
T prw
Ty = ———
0 4 pbh

and represents the ratio of the mass of a cylinder of fluid with radji2ggo the actual mass
of the beam where, is the density of the fluid, ang, is the density of the beam. The
hydrodynamic function for an oscillating cylinder in a viscous fluid is given by [30, 46],

4i K (—iViRy@)
ViR Ko(—iiRy@)'
where K; and K, are Bessel functiong;, andI’; are the real and imaginary parts Iof
respectively and = /—1.

(22)

['w)=1+ (23)

The dynamics of a beam in fluid are not precisely equivalent to that of a damped simple
harmonic oscillator. For example, both the mass and damping are frequency dependent.
The mass of the entrained fluid plus the mass of the beam is

mf(w> = M (1 + TOFT<RO(D)> (24)

wherem, = am;, is the equivalent mass of the beam such that the kinetic energy of this
mass is equal to that of the fundamental modenand= p, Lwh is the mass of the beam.
For the fundamental flexural mode of a doubly-clamped beas 0.396. The viscous
damping is

V(W) = MeyrewTi( Ro) (25)
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wherem., . = am,, is the equivalent mass of a cylinder of fluid with diameter equal
to w. As the frequency of oscillation increases the magnitude: pfdecreases and the
magnitude ofy, increases.

The simple harmonic oscillator approximation is convenient to define commonly used
diagnostics such as the quality fac@and resonant frequency of the beam in fluid As

a result of the frequency dependent mass and damping, the fundamental peak of the noise
spectra is not well approximated as a Lorentzian for these strongly damped oscillators and
care must be taken when determinip@ndw,. The resonant frequency in fluig will be

defined to be the frequency which maximizes the noise spectrum in Eq. (20). The quality
factor(@ is then defined as the ratio of energy stored by the potential and kinetic energy of
the beam and fluid to the energy dissipated by viscosity per oscillation when evaluated at
wy. This yields

~ mf(wf)wf _ TO_I + FT(R()(IJJC). (26)
Vr(wy) Li(Rowy)

Given values of the nondimensional paramet@gsand 7, Eqs. (20) and (26) directly

yield the analytical predictions fav; and (). The variation of¢) andw; with R, and

T, are shown in Fig. 12 over a large range of parameters. The quality factor increases
significantly as the frequency of oscillation is increased and also increases as the mass
loading decreases. The resonant frequency of the beam when placed iw fllug, also
increases with frequency of oscillation and with a reduction in mass loading. The increase
of wy/wy with respect taR, is very rapid forRk, < 20 with only small changes for higher
frequencies, while the dependence ufigmresults in a nearly uniform increase over the
range shown. It is typical foR, ~ 1 and7, ~ 1 for many proposed microscale applica-
tions in water. In this case the analytics predict strongly damped dynamicgwitp.

For applications that require a distinct peak to be measured this presents a significant
challenge.

Using Euler-Bernoulli beam theory [9] for a doubly-clamped beam these expressions can
be written as a function of geometty,, w, h) which are often the experimentally relevant
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parameters rather thaky, and 7. The relevant expressions are,

11.2 [E h
Wo = % Eﬁ7 (27)
B3
k = 16E (E) w, (28)
281 [E jw\?2
Ry = oo ﬁ(f)h, (29)

whereE' is the Youngs modulus. These expressionsi{pand R, together with Fig. 12
suggest thaf) andw/ increase by reducing the length, increasing the width, or increasing
the height of the beam. However, the precise improvement is not clear since the avail-
able theoretical predictions are only for long and slender beams. In light of this we have
performed full time-dependent and three-dimensional finite element numerical simula-
tions [13] of a wide range of geometries to determine precisely the stochastic dynamics.

To compute the stochastic dynamics of the beams we use the approach discussed in
Refs. [1, 2] and provide only the essential details necessary for our discussion. The auto-
correlation of equilibrium fluctuations in beam displacement are given by the deterministic
ring-down of the beam to the removal of a point step force applied-atZ /2 given by

F(t) = { Fy fort <0 (30)

0 fort>0

wheret is time, andFj, is the magnitude of the force. The valuelgfis chosen for each

simulation such that the beam deflections remain small and, in this case, the results are

independent of its specific value. The autocorrelation of equilibrium fluctuations in beam

displacement is then given by,

Z\(t)
Fy

We use lower casg to indicate stochastic displacement, and upper Zase indicate the

(21(0)21(1)) = kT

(31)

deterministic ring-down measured at the center of the beany./2. The noise spectrum
of fluctuations in beam displacement is given by,

Gw) =4 /OOO (z1(t)21(0)) cos (wt) dt. (32)

The noise spectrum is used to determineand( for the numerical results. The resonant
frequencyw; is the frequency maximizing(w) and the quality is given by

_mylwpwy K
Qm TIU — Gy, 33
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The right hand side of Eq. (33) is found usimg (w;) = \/k/w; and using the peak value

of the noise spectrur@(w;) to determine the damping. The error in using the bulk mode
spring constant, as opposed to the dynamic spring constant for the fundamental mode, is
small and on the order of several percent.

In summary, the numerical procedure is the following: (i) Compute) from a deter-
ministic simulation of the ring down of the beam due to the removal of a step force; (ii)
Compute the autocorrelation of equilibrium fluctuations in displacement using Eq. (31);
(iif) Compute the noise spectrum using Eq. (32); (iv) Calculate diagnostigss the
frequency that maximizes the noise spectrum,@ns found from Eg. (33).

We have performed extensive numerical tests on doubly-clamped beams in vacuum and
in fluid to ensure the accuracy of our calculations [31]. For each geometry explored we
have conducted numerical simulations over a range of spatial and temporal discretiza-
tions to ensure the convergence of our reported values for the quality factor and resonant
frequency of the fundamental mode in fluid. The required spatial resolution depended sig-
nificantly upon the geometry explored with the short and wide beam geometries requiring
higher spatial resolution. Typically, we found that a time stgp< P/15 was sufficient
whereP is the period of the fundamental mode in vacuum. We have also been careful to
choose the size of the overall simulation domain to be large enough such that the bounding
walls do not affect the results. In our results, the bounding walls are always a distance of
154, or greater from the beam surface whére= (v/w;)/? is the Stokes length for the
fundamental mode in fluid.

As the baseline geometry we consider a doubly-clamped beam with Iéhgth15um,

width v’ = 0.4um, and height’ = 0.1um. This geometry is similar to what has been re-
cently used in experiments demonstrating thermoelastic actuation in vacuum and air [33].
Here, we are interested in the beam dynamics in a viscous fluid and use water. This geom-
etry is referred to as case (1) in Table 7 and we consider seven additional geometries which
are chosen as systematic variations of the baseline geofiigtry’, 1’). Also shown in

Table 7 are the aspect ratios for the different geometries to give an idea of the range of
geometries used and also to give some indication of the deviation from the ideal case of a
long and thin beam used in analytical predictions.

Table 8 illustrates the deviations in geometry when compared with the baseline geometry
of case 1. Also included are the beam properties that can be determined independent of
the fluid dynamics which include the bulk spring constanthe frequency parameter in
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vacuumpR,, and the mass loading parameigr We have used finite element numerical
simulations of the beams in vacuum to determine the numerical valuesofl w, for

all of the geometries considered. Given this information one can use the analytical ex-
pressions to predia) andw; which is illustrated in Fig. 12. From Table 8 it is clear

that over four orders of magnitude of spring constant, over three orders of magnitude of
frequency parameter, and over a single order of magnitude of the mass loading parameter
are considered by the chosen variations in geometry.

Case L[um] w[pm] h[pgm] L/w L/h w/h

(1) 15 0.4 0.1 375 150 4
2) 15 0.8 0.1 18.75 150 8
3) 15 1.2 0.1 125 150 12
4 15 0.4 0.2 375 75

(5) 15 0.4 0.3 375 50 1.33
6) 5 0.4 0.1 125 50

7 1 0.4 0.1 25 10 4
(8) 0.4 0.4 0.1 1 4 4

Table 7: The eight geometries of doubly-clamped beams used in the numerical simula-
tions. Case (1) is the baseline geometry and the remaining cases are variations of this
geometry. The beam aspect ratios arev, L/h, andw/h. The horizontal lines sepa-

rate the different studies performed: the baseline geometry, variation in width, variation
in height, and variation in length. The beams are composed of silicon with Young’s mod-
ulus E = 210 GPa, density, = 3100 kg/m* and the fluid is water wittp; = 997

kg/m?, n = 8.56 x 10~* kg/ms. All simulations are performed at room temperature with

T = 300K.

We first quantify the stochastic dynamics of the baseline geometry. The numerical results
for the autocorrelation of equilibrium fluctuations in beam displacement are shown in
Fig. 13(a), and the noise spectrum is shown in Fig. 13(b). In each figure the baseline
geometry is labeled’.

The autocorrelation curves are normalized usifigz7 where the value of: for each

case is given in Table 8. The noise spectra have been normalized using the peak value
G(wy). These figures illustrate that the dynamics of this micron scale beam in water
are strongly damped. The value of the quality and resonant frequency in fluid using our
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Case L/L' w/w'" h/W Kk[N/m]  Rq To

1 1 1 1 0.40 1.08 1.01
2 1 2 1 0.83 4.55 2.02
k) 1 3 1 1.21 10.19  3.03
@ 1 1 2 3.19 2.17 0.51
5) 1 1 3 10.82 3.19 0.34
6) 13 1 1 10.92 10.20  1.01
7 115 1 1 1178.95 23155 1.01
(8 1/375 1 1 11413.04 1146.08 1.01

Table 8: The geometry variations with respect to the baseline geometry given by case (1)
with (L, w’, h'). Cases (2) and (3) explore increasing width, cases (4) and (5) explore in-
creasing thickness, and cases (6)-(8) explore decreasing length. Also shown are the spring
constantk, the frequency based Reynolds number in vacutygnand the mass loading
parametefl. The values ok and R, are determined using finite element simulations.

numerical results are given in Table 9 and @e= 0.80 andw;/w, = 0.22. Also shown

are the predictions from analytics using Egs. (20) and (26) which yjld= 0.68 and
wf/wg = 0.22. The analytical predictions are quite accurate for the frequency drop while
under predicting the quality factor for this geometry.

Next we consider the variation in the stochastic dynamics of the beam as a function of the
beam width. In particular, we double and triple the beam widtwhile holding L. and

h constant. For increasing width the frequency parameter increasis asw? while

the mass loading parameter increase§@s- w. This has the effect of increasing the

fluid inertia while simultaneously increasing the mass loading. These two counteracting
effects suggest the increasehandw; will only be moderate. The autocorrelations

and noise spectra from numerical simulations are shown in Fig. 13. The autocorrelation
results exhibit both positively and negatively correlated results as expected with the dy-
namics becoming more underdamped as the width is increased. The noise spectra clearly
illustrate that the peak value shifts to higher frequency and that the peak itself becomes
sharper as the width increases. For case 1, the noise spectra has significant contributions
at low frequency whereas for case 3 the noise spectra has become more symmetric with a
Lorentzian shape.

Values for the quality and resonant frequency in fluid from our numerical results are given
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Case R wilwo Q  Q/Q | wi/wi Q'

(1) 0.23 0.22 0.80 1.0 0.22 0.68
(2) 1.08 0.24 1.03 1.29 0.27 1.05
(3) 291 0.29 1.36 1.71 0.28 1.31
(4) 1.00 0.46 1.28 1.61 0.50 1.35
(5) 2.11 0.66 201 252 0.66 2.13
(6) 4.80 0.47 1.57 1.97 0.51 2.04
(7) 164.46 0.71 6.13 7.69 0.67 9.22
(8) 885.19 0.77 590 7.40 0.69 20.24

Table 9: The stochastic dynamics of the beams in fluid. Shown is the frequency based
Reynolds number in fluid, the reduction in the resonant frequengy w, and the quality
factor ). Also shown is the improvement of the quality with respect to that of case (1)
given by@Q’ = 0.8. Qf andwf/wg are the results predicted from analytical theory using
Egs. (20) and (26).

in Table 9. When compared to the quality for the baseline geondgtrihe increase in
quality is@/Q" = 1.29 for doubling the width, and)/Q" = 1.71 for tripling the width.

The quality increases with increasing width however the magnitude of the quality is small
indicating that the beam dynamics remain strongly damped. The increase in the value of
wy/wy is slightly less than what is found f@p. A comparison of our numerical values of

wy and@ with the analytical predictions of Egs. (20) and (26) are shown in Fig. 14. The
circles are the results from our numerical simulations and the dashed line is the analytical
prediction wherg = w/w’ andw’ is the width of the baseline geometry. It is clear that
that the analytical predictions remain quite accurate over this range. This includes case 3
whereL/w ~ w/h ~ 12 andL/h > 1. Figure 14 indicates that the magnitude of the
increase in quality with increasing width is quite moderate. Furthermore, the increase in
wy is quite small and becomes nearly flat.gt/w, ~ 0.24 for £ 2 2.

Next we consider the variation in beam dynamics as the height is increased. We consider
the cases wherg is doubled and tripled while thé andw are held constant. As the
height is increased the frequency parameter increases ash whereas the mass loading
parameter decreasesABs~ h~!. These two effects both contribute to increasip@nd

wy. The normalized autocorrelations and noise spectra from our numerical simulations
are shown in Fig. 15. The results clearly indicate an increasing value ofdadind )
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Figure 13: The autocorrelations and noise spectra of equifibfluctuations in beam
displacement as a function of beam width from numerical results: casé)lcase 2

(2uw"), case 3 (3@'). (a) The autocorrelations, the results have been normalized using
k/(kgT) for each case. (b) The noise spectra, the results have been normalized by the
peak value for each casé(wy).

and numerical values are given in Table 9. The relative increase in quality@$= 1.61
when the height is doubled, ag ' = 2.52 when the height is tripled. The increase in
wy/wy follows a similar trend.

A comparison of our numerical results with the predictions of theory is shown in Fig. 14
using¢ = h/h’. The square symbols are the numerical results and the solid line is the an-
alytical prediction. It is clear that the increasegjrandw, are much larger for variations

in height when compared to what was found for increases in beam width. The analytical
predictions remain quite accurate and insightful over the range of aspect ratios explored
by varying the beam height. We highlight that this includes case 5 whgiex 1.

The last case we consider is decreasing the beam length while holding the width and
height constant. In this case the frequency parameter increases rapiltly as L2
whereadl; remains constant. The autocorrelations and noise spectra are shown in Fig. 16
which illustrate a significant increase in resonant frequency and quality. From Fig. 16(a)
the results for the most extreme geometry exploféd37.5, clearly show the influence

of higher harmonics. The numerical values@fandw; from our numerical results are
given Table 9. For case 8 whefg/ ' = 37.5 the increase in quality i§)/Q’ = 7.4

and the reduction of the resonant frequency when compared to its value in vacuum is
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Figure 14: (color) Comparison of numerical results with gtiedl predictions for) and

wy as a function of widthv and height.. The circles (blue) are for increasing width and
the squares (red) are for increasing height. The solid line is the analytical prediction for
increasing width and the dashed line is the analytical prediction for increasing height. To
place all values on a single plot= w/w' for the varying width results angl= h/h’ for

the varying height results.

wy/wo = 0.77 indicating significant changes are possible by changing the beam length.

The analytical predictions given in Table 9 show significant deviations from our numerical
results. This is also illustrated in Fig. 17 where the triangles are the numerical results and
the solid lines are the analytical predictions. For casd. G = 12.5) the analytical
predictions are quite accurate. However, for casé /il = 2.5), and case 8l{/w = 1)

the analytical predictions over predi¢t and under predicb/w,. The approximation

of using the fluid flow from an infinite two-dimensional oscillating cylinder is no longer
well justified. The numerical results suggest the presence of additional modes of fluid
dissipation that are not captured in the two-dimensional theory.

To explore this further we quantify the fluid motion around the beam in the determinis-
tic numerical simulations where the beam rings down upon the removal of a step force.
Figures 18 and 19 illustrate the magnitude of the fluid velocity in the transwegraad

axial u, directions, respectively. The velocities are plotted along a line beginning at
(0.0,0.0,0.01zm) and ending at/(, 0.0,0.01xm) for all cases. In our notation the fluid
velocity in the ¢, y, z) directions is {,, u,, u.), see Fig. 11 for the definition of the coor-
dinate directionsA, y, z). The velocities are shown at the time when the velocity of the
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Figure 15: The autocorrelations and noise spectra as a @unectibeam height from nu-
merical results: case 1|, case 4 (2'), case 5 (8'). (a) The normalized autocorrelations.
(b) The normalized noise spectra.

beam is at its maximum value which occurs when the center of the beam crossés

the first time during its ring down. The maximum valuewgfat this time is labeled,

and is used to normalize both the transverse and axial velocities. The axial direction is
normalized by the length so that all cases can be represented on the same figure.

Figure 18 shows the transverse fluid velocityfor cases 1-8. The baseline geometry
(dashed line) and cases 2-7 (solid lines) collapse onto a single curve with a shape similar
to that of the fundamental mode of a doubly-clamped beam. Case 8 differs significantly
with a much sharper peak indicating that its dynamics are quite different which is expected
since this geometry is substantially different than the others.

Figure 19(a) illustrates the normalized axial velocitigsas the beam width and height

are varied. In the approximation of a two-dimensional flow the axial velocity is identically
zero and any deviations from this in the numerical results indicate fluid dynamics not
considered in the analytical predictions. The bimodal shape of the curves is expected
from the symmetry of the fundamental mode. Ror- L/2 the axial fluid velocity is
positive and forr < L/2 it is negative. The baseline geometry is shown as the dashed
line and has a negligible axial fluid velocity. At its maximum value it is o’ly2.5%

of the maximum transverse velocity. A similar trend is found for cases 2-5. As the
width or height is increased the relative magnitude of the axial velocities increase. It is
expected that if larger values of the width or height were computed the axial velocities
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Figure 16: The autocorrelations and noise spectra as a @unectibeam length from nu-
merical results: case 1.(), case 6 [//3), case 7 ['/5), case 8 [//37.5). (a) The nor-
malized autocorrelations. (b) The normalized noise spectra.

would become significant and at this point the analytical predictions would show large
deviations.

Figure 19(b) shows the relative value of the axial velocities as the length of the beam
is decreased. The baseline geometry is included for reference as the dashed line. 1t is
clear that the axial velocities are now quite significant and range from 10% to 40% of
ug. The axial velocities do not vanish at= 0, L for cases 7 and 8 because these beams
are held by rigid supports, see Fig. 11, and the lateral side walls of the numerical domain
are distant. The axial velocities result in fluid dissipation not accounted for in the two-
dimensional theory and contribute significantly to the lower value§ dbund in the
numerical simulations. Furthermote; from the numerical simulations are larger than the
analytical predictions. The added mass in the simulations are smaller than the predicted
values and this reduction is a direct result of the three-dimensionality of the fluid flow.
The maximum value of the relative axial velocity does not follow a monotonic trend with

L because as the length becomes small the precise nature of the beam dynamics vary
in a complicated manner which directly affects the fluid motion and therefore the fluid
dissipation. In fact, the smallest bedity37.5 has an aspect ratio @f/w = 1 and is better
described as a plate undergoing complicated dynamics as indicated by the presence of
higher mode effects in Fig. 16(a). Overall, our results suggest that the relative magnitude
of the axial velocity can be used to indicate the applicability of the two-dimensional theory.
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Figure 17: (color) The variation of the quali€y, panel (a), and of the resonant frequency
in fluid wy/wy, panel (b), by decreasing the lengtlof the beam relative to the value of
case (1) given by.. The triangles are the results from numerical simulation and the solid
line is the analytical prediction.

In many microscale technologies the ability to sense small forces is important and there-
fore a small spring constant is desirable. In light of this, the improved performance, as
measured by increased valuesiphindw, with increasingw, increasing: or decreasing

L all come at the price of reduced force sensitivity. Using Eq. (28) to estitngields

its dependence upon geometry and the magnitude of the improved performance follows
the same trend as increasihg Overall, these tradeoffs would need to be balanced in a
particular application.

The stochastic dynamics of micron and nanoscale elastic beams can be directly quantified
using deterministic numerical computations for the precise geometries and conditions of
experiment. We have shown that the geometry of doubly-clamped beams can be tailored
to overcome the strong fluid damping that occurs for small scale systems in a viscous fluid.
Our numerical exploration has been used to build physical insights into the stochastic dy-
namics and to place realistic bounds upon the applicability of the two-dimensional theory.
Overall, we find that the two dimensional theory is quite accurate far beyond what may
have been expected based upon the underlying assumptions. When deviations do occur a
significant factor are fluid velocities in the axial direction resulting in increased dissipa-
tion and a lower added mass. It is anticipated that these results will be useful in guiding
the development of future experiments by providing the basis for predictions that cover a
wide range of geometries. Furthermore, our results provide insight into the development
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Figure 18: The transverse fluid velocity for cases 1-8 along the line beginning at
(0.0,0.0,0.0&m) and ending at/({,0.0,0.0xm) from the deterministic numerical simu-
lations where the beam velocity is at its maximum value. The baseline geometry is shown
as the dashed line, cases 2-7 are the solid lines, and case 8 is the dash-dot line.

of accurate theoretical models valid for the finite geometries used in experiment.

5 Executive Summary

We have developed analytical and theoretical techniques to quantify the stochastic and
externally driven dynamics of elastic objects in a viscous fluid for the precise conditions of
experiment. These techniques allow the quantification of future designs aiming to exploit
the dynamics of micro and nanoscale devices in fluid.

This project provided support for the following graduate research. The theses are available
to the public in digital form from the University Library at Virginia Tech (www.lib.vt.edu).
The specific thesis details are given below:

e Margarita Villa, Masters Thesis, Tailoring the geometry of micron scale resonators
to overcome viscous damping, Virginia Tech, (2009).

e Matthew Clark, PhD Dissertation, The driven and stochastic dynamics of micro
and nanoscale cantilevers in viscous fluid and near a solid boundary, Virginia Tech,
(2008).
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Figure 19: The normalized axial velocity from numerical siation. (a) The axial ve-

locity found when varying the width and height of the baseline geometry. (b) The axial
velocity found when decreasing the length of the baseline geometry. The results for the
baseline geometry are given by the dashed line. The axial velocities are computed along
a line in thex-direction with origin (0,0).01xm) and end-pointf,0,0.01m), see Fig. 11

for definitions of coordinate directions. The velocity is normalizedubyor each case
whereu, is the maximum transverse velocity which occurs:at L/2. The abscissa is
normalized by the length for each case.

e Carlos Carvajal, Masters Thesis, The fluid coupled motion of micro and nanoscale
cantilevers, Virginia Tech, (2007).

This project has supported the following journal articles that are available in the open
literature.

e M.M. Villa and M.R. Paul, Stochastic dynamics of micron-scale doubly clamped
beams in a viscous fluid®hysical Review 69, 056314, (2009).

e M.T. Clark and M.R. Paul, The stochastic dynamics of rectangular and V-shaped
atomic force microscope cantilevers in a viscous fluid and near a solid boundary,
Journal of Applied Physi¢4.03 094910, (2008).
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